LineOrder Gallery #1
Kobon triangle problem


3-Line Solution (1 Triangle)

[[3,2],
[3,1],
[2,1]]

4-Line Solution #1 (2 Triangles)

[[4,3],
[3,4],
[2,4,1],
[2,3,1]]

4-Line Solution #2 (2 Triangles)

[[4,3,2],
[[3,4],1],
[[4,2],1],
[[2,3],1]]

5-Line Solution (5 Triangles)

[[5,3,4,2],
[3,5,4,1],
[2,5,1,4],
[5,2,1,3],
[4,2,3,1]]

6-Line Solution #1 (7 Triangles)

[[6,4,5,3],
[4,[3,6],5],
[4,[6,2],5,1],
[3,2,6,1,5],
[6,2,3,1,4],
[5,[2,3],4,1]]

6-Line Solution #2 (7 Triangles)

[[[3,4],[2,5],6],
[3,4,[5,1],6],
[2,[4,1],[5,6]],
[2,[1,3],6,5],
[[1,2],[6,3],4],
[1,2,[3,5],4]]

7-Line Solution (11 Triangles)

[[6,7,4,5,2,3],
[6,4,7,5,1,3],
[4,6,5,7,1,2],
[3,6,2,7,1,5],
[6,3,7,2,1,4],
[5,3,4,2,1,7],
[3,5,2,4,1,6]]

8-Line Solution (15 Triangles)

[[8,6,7,4,5,2,3],
[6,[4,8],7,5,1,3],
[4,6,5,7,8,1,2],
[3,6,[8,2],7,1,5],
[6,3,[7,8],2,1,4],
[5,3,4,2,8,1,7],
[3,[8,5],2,4,1,6],
[3,[5,7],[2,4],6,1]]

9-Line Solution (21 Triangles)

[[9,7,8,5,6,3,4,2],
[3,7,5,9,6,8,4,1],
[2,7,9,5,8,6,1,4],
[5,7,6,9,8,2,1,3],
[4,7,2,9,3,8,1,6],
[7,4,9,2,8,3,1,5],
[6,4,5,2,3,9,1,8],
[9,4,2,6,3,5,1,7],
[8,4,6,2,5,3,7,1]]

10-Line Solution (25 Triangles) by Wajnberg

[[10,8,9,6,7,4,5,3],
[8,[4,10],6,7,[3,9],5],
[4,8,6,10,7,[9,2],5,1],
[3,8,[10,2],6,9,7,1,5],
[6,8,7,10,9,2,3,1,4],
[5,8,3,10,2,4,9,1,7],
[8,5,10,3,2,9,4,1,6],
[7,5,6,3,4,2,10,1,9],
[10,5,[2,3],7,4,6,1,8],
[9,5,7,3,6,[2,4],8,1]]

11-Line Solution (32 Triangles) by Honma

[[11,10,9,3,8,5,7,4,6,2],
[3,10,5,9,4,8,7,11,6,1],
[2,10,11,9,1,8,7,5,6,4],
[5,10,9,2,8,11,7,1,6,3],
[4,10,2,9,11,8,1,7,3,6],
[7,9,8,10,11,2,1,4,3,5],
[6,9,10,8,2,11,4,1,5,3],
[9,6,10,7,2,4,11,5,1,3],
[8,6,7,10,4,2,5,11,3,1],
[6,8,7,9,4,5,2,3,11,1],
[6,2,7,4,8,5,9,3,10,1]]

12-Line Solution (38 Triangles) by Kabanovitch

[[12,5,[9,11],7,10,[4,6],8,2,3],
[5,12,7,9,4,11,6,10,8,1,3],
[5,4,7,6,9,8,11,10,12,1,2],
[5,3,7,12,9,2,11,10,[6,1],8],
[4,3,2,12,1,11,9,10,7,8,6],
[7,3,9,12,11,2,10,[1,4],8,5],
[6,3,4,12,2,9,11,1,10,5,8],
[9,3,11,12,10,2,1,4,6,5,7],
[8,3,6,12,4,2,7,[11,1],5,10],
[11,3,12,8,2,6,4,1,7,5,9],
[10,3,8,12,6,2,4,7,[1,9],5],
[3,10,8,11,6,9,4,7,2,5,1]]

13-Line Solution (47 Triangles) by Kabanovitch

[[13,9,11,10,12,7,8,3,5,4,6,2],
[3,9,4,10,7,13,8,11,5,12,6,1],
[2,9,13,10,11,7,12,8,1,5,6,4],
[9,2,10,13,7,11,8,12,5,1,6,3],
[9,7,10,8,13,11,2,12,4,1,3,6],
[7,9,8,10,11,13,12,2,1,4,3,5],
[6,9,5,10,2,13,4,11,3,12,1,8],
[9,6,10,5,13,2,11,4,12,3,1,7],
[8,6,7,5,4,2,3,13,1,11,12,10],
[6,8,5,7,2,4,13,3,11,1,12,9],
[6,13,5,2,8,4,7,3,10,1,9,12],
[13,6,2,5,4,8,3,7,1,10,9,11],
[12,6,11,5,8,2,7,4,10,3,9,1]]

14-Line Solution (53 Triangles) by Johannes Bader

[[14,12,13,7,10,6,9,3,8,5,11,4],
[3,7,5,6,4,10,9,12,8,13,11,14],
[2,7,12,6,13,10,14,9,1,8,11,5],
[5,7,6,2,10,12,9,13,8,14,11,1],
[4,7,2,6,12,10,13,9,14,8,1,11,3],
[7,4,2,5,12,3,13,14,10,1,9,11,8],
[6,4,5,2,3,12,14,13,1,10,11,9],
[9,10,12,2,13,4,14,5,1,3,11,6],
[8,10,2,12,4,13,5,14,3,1,6,11,7],
[8,9,2,4,12,5,13,3,14,6,1,7,11],
[12,13,2,14,4,1,5,3,8,6,9,7,10],
[11,8,2,9,4,10,5,6,3,7,14,1,13],
[11,2,8,4,9,5,10,3,6,14,7,1,12],
[2,11,4,8,5,9,3,10,6,13,7,12,1]]

15-Line Solution (65 Triangles, 5-rotational symmetry) by Toshitaka Suzuki

[[15,13,14,11,12,7,9,5,8,6,10,3,4,2],
[3,7,5,13,6,11,9,12,8,15,10,14,4,1],
[2,7,13,5,11,6,12,9,15,8,14,10,1,4],
[5,7,6,13,9,11,8,12,10,15,14,2,1,3],
[4,7,2,13,3,11,15,12,14,9,1,8,10,6],
[7,4,13,2,11,3,12,15,9,14,8,1,10,5],
[6,4,5,2,3,13,15,11,14,12,1,9,10,8],
[9,13,11,4,12,2,15,3,14,6,1,5,10,7],
[8,13,4,11,2,12,3,15,6,14,5,1,7,10],
[11,13,12,4,15,2,14,3,1,6,5,8,7,9],
[10,13,8,4,9,2,6,3,5,15,7,14,1,12],
[13,10,4,8,2,9,3,6,15,5,14,7,1,11],
[12,10,11,8,9,4,6,2,5,3,7,15,1,14],
[15,4,2,10,3,8,6,9,5,12,7,11,1,13],
[14,4,10,2,8,3,9,6,12,5,11,7,13,1]]

16-Line Solution (72 Triangles, based on 15-line solution by Toshitaka Suzuki) by Johannes Bader

[[16,14,15,12,13,8,10,6,9,7,11,4,5,3],
[3,4,5,6,7,8,9,10,11,12,13,14,15,16],
[2,4,8,6,14,7,12,10,13,9,16,11,15,5,1],
[2,3,8,14,6,12,7,13,10,16,9,15,11,1,5],
[2,6,8,7,14,10,12,9,13,11,16,15,3,1,4],
[2,5,8,3,14,4,12,16,13,15,10,1,9,11,7],
[2,8,5,14,3,12,4,13,16,10,15,9,1,11,6],
[2,7,5,6,3,4,14,16,12,15,13,1,10,11,9],
[2,10,14,12,5,13,3,16,4,15,7,1,6,11,8],
[2,9,14,5,12,3,13,4,16,7,15,6,1,8,11],
[2,12,14,13,5,16,3,15,4,1,7,6,9,8,10],
[2,11,14,9,5,10,3,7,4,6,16,8,15,1,13],
[2,14,11,5,9,3,10,4,7,16,6,15,8,1,12],
[2,13,11,12,9,10,5,7,3,6,4,8,16,1,15],
[2,16,5,3,11,4,9,7,10,6,13,8,12,1,14],
[2,15,5,11,3,9,4,10,7,13,6,12,8,14,1]]

17-Line Solution (85 Triangles) by Johannes Bader

[[2,6,4,12,5,8,3,10,7,14,11,13,9,16,15,17],
[1,6,12,4,14,8,16,10,13,5,11,7,17,9,15,3],
[4,6,5,12,8,1,10,14,7,13,11,16,9,17,15,2],
[3,6,1,12,2,14,16,8,13,10,17,11,15,7,9,5],
[6,3,12,1,8,14,10,16,13,2,11,17,7,15,9,4],
[5,3,4,1,2,12,16,14,17,13,15,10,11,8,9,7],
[8,12,10,1,14,3,13,16,11,2,17,5,15,4,9,6],
[7,12,3,1,5,14,2,16,4,13,17,10,15,11,6,9],
[10,12,11,14,13,1,16,3,17,2,15,5,4,7,6,8],
[9,12,7,1,3,14,5,16,2,13,4,17,8,15,6,11],
[12,9,14,1,13,3,16,7,2,5,17,4,15,8,6,10],
[11,9,10,7,8,3,5,1,4,2,6,16,17,14,15,13],
[14,9,1,11,3,7,16,5,2,10,4,8,17,6,15,12],
[13,9,11,1,7,3,10,5,8,2,4,16,6,17,12,15],
[16,1,17,3,2,9,5,7,4,11,8,10,6,13,12,14],
[15,1,9,3,11,7,13,5,10,2,8,4,14,6,12,17],
[1,15,3,9,2,7,5,11,4,10,8,13,6,14,12,16]]

18-Line Solution (93 Triangles) by Johannes Bader

[[18,17,16,13,15,7,12,5,10,9,14,6,11,4,8,3],
[3,5,4,7,6,13,9,17,10,12,8,15,11,16,14,18],
[2,5,17,7,13,4,16,9,12,6,15,10,18,11,14,8,1],
[5,2,7,17,13,3,16,18,12,15,9,10,6,14,11,1,8],
[4,2,3,17,18,13,16,7,15,12,1,10,14,9,11,6,8],
[7,2,13,17,9,16,12,3,15,18,10,4,14,1,11,5,8],
[6,2,4,17,3,13,18,16,5,15,1,12,14,10,11,9],
[9,13,10,17,12,2,15,16,11,18,14,3,1,4,5,6],
[8,13,2,17,6,16,3,12,18,15,4,10,1,14,5,11,7],
[13,8,17,2,12,16,15,3,18,6,4,9,1,5,14,7,11],
[13,12,17,15,2,16,8,18,3,14,4,1,6,5,9,7,10],
[13,11,17,8,2,10,16,6,3,9,18,4,15,5,1,7,14],
[12,11,10,8,9,2,6,17,4,3,7,18,5,16,1,15],
[15,17,16,2,18,8,3,11,4,6,1,9,5,10,7,12],
[14,17,11,2,8,16,10,3,6,18,9,4,12,5,7,1,13],
[17,14,2,11,8,15,10,12,6,9,3,4,18,7,5,13,1],
[16,14,15,11,12,8,10,2,9,6,13,4,7,3,5,18,1],
[2,14,8,11,3,10,6,15,9,12,4,16,7,13,5,17,1]]

19-Line Solution (107 Triangles) by Kyle Wood

[[18,19,12,16,14,17,13,15,10,11,6,8,4,7,5,9,2,3],
[18,6,12,4,14,5,13,10,19,11,16,8,17,7,15,9,1,3],
[4,6,5,12,8,14,10,18,11,13,7,16,9,17,15,19,1,2],
[3,6,18,12,2,14,19,13,16,10,17,11,15,8,1,7,9,5],
[6,3,12,18,14,2,13,19,10,16,11,17,8,15,7,1,9,4],
[5,3,4,18,2,12,19,14,16,13,17,10,15,11,1,8,9,7],
[8,12,10,14,11,18,13,3,16,19,17,2,15,5,1,4,9,6],
[7,12,3,14,18,10,13,11,19,16,2,17,5,15,4,1,6,9],
[10,12,11,14,13,18,16,3,17,19,15,2,1,5,4,7,6,8],
[9,12,7,14,3,18,8,13,2,19,5,16,4,17,6,15,1,11],
[12,9,14,7,18,3,13,8,19,2,16,5,17,4,15,6,1,10],
[11,9,10,7,8,3,5,18,4,2,6,19,1,16,17,14,15,13],
[14,9,18,7,3,11,8,10,2,5,19,4,16,6,17,1,15,12],
[13,9,11,7,10,3,8,18,5,2,4,19,6,16,1,17,12,15],
[16,18,17,3,19,9,2,7,5,8,4,11,6,10,1,13,12,14],
[15,18,9,3,7,19,8,2,11,5,10,4,13,6,14,1,12,17],
[18,15,3,9,19,7,2,8,5,11,4,10,6,13,1,14,12,16],
[17,15,16,9,13,7,11,3,10,8,14,5,12,4,6,2,1,19],
[3,15,9,17,7,16,8,11,2,10,5,13,4,14,6,12,1,18]]

20-Line Solution (116 Triangles, based on n=19 solution)
by Kyle Wood

[[4,3,10,6,8,5,9,7,12,11,16,14,18,15,17,13,20,19],
[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20],
[2,4,1,10,16,8,18,9,17,12,20,11,14,6,15,5,13,7,19],
[2,3,1,20,16,18,10,17,8,14,12,19,11,15,9,13,6,7,5],
[2,6,10,8,1,9,16,12,18,11,17,14,20,15,3,13,19,7,4],
[2,5,10,1,8,16,9,18,12,17,11,20,14,3,15,19,13,4,7],
[2,8,10,9,1,12,16,11,18,14,17,15,20,13,3,19,5,4,6],
[2,7,10,5,1,6,16,3,18,20,17,4,14,19,12,15,11,13,9],
[2,10,7,1,5,16,6,18,3,17,20,12,14,11,19,15,4,13,8],
[2,9,7,8,5,6,1,3,16,20,18,4,17,19,14,15,12,13,11],
[2,12,1,16,7,18,5,17,6,20,3,14,9,19,4,15,8,13,10],
[2,11,1,7,16,5,18,6,17,3,20,9,14,4,19,8,15,10,13],
[2,14,16,15,18,17,1,20,7,3,5,19,6,4,9,8,11,10,12],
[2,13,16,1,18,7,17,5,20,6,3,11,9,12,4,8,19,10,15],
[2,16,13,18,1,17,7,20,5,3,6,19,9,4,11,8,12,10,14],
[2,15,13,14,1,11,7,12,5,9,6,8,3,10,20,4,18,19,17],
[2,18,13,1,15,7,14,5,11,6,12,3,9,20,8,4,10,19,16],
[2,17,13,15,1,14,7,11,5,12,6,9,3,8,20,10,4,16,19],
[2,20,1,3,7,5,13,6,15,9,11,4,12,8,14,10,17,16,18],
[2,19,1,13,7,15,5,14,6,11,3,12,9,17,8,18,10,16,4]]

21-Line Solution #1 (133 Triangles, 3-rotational symmetry) by P.Savchuk

[[21,15,19,17,20,16,18,13,14,11,12,9,10,7,8,5,6,3,4,2],
[3,15,5,17,11,21,13,19,7,16,9,14,12,20,10,18,6,8,4,1],
[2,15,21,17,19,11,16,13,20,14,18,9,12,7,10,5,8,6,1,4],
[5,15,7,11,6,13,9,17,12,19,14,16,10,21,18,20,8,2,1,3],
[4,15,2,17,21,11,19,13,16,7,14,9,20,12,18,10,3,8,1,6],
[7,15,11,4,13,17,9,19,12,16,14,21,10,20,18,2,8,3,1,5],
[6,15,4,11,17,13,21,19,2,16,5,14,20,9,18,12,3,10,1,8],
[9,11,10,13,12,15,14,17,16,19,18,21,20,4,2,6,3,5,1,7],
[8,11,15,13,4,17,6,19,21,16,2,14,5,20,7,18,3,12,1,10],
[11,8,13,15,12,17,14,19,16,4,21,6,20,2,18,5,3,7,1,9],
[10,8,9,15,6,4,7,17,2,21,5,19,3,16,20,13,18,14,1,12],
[13,8,15,10,17,4,19,6,16,21,14,2,20,5,18,7,3,9,1,11],
[12,8,10,15,9,4,6,17,7,21,2,19,5,16,3,20,11,18,1,14],
[15,8,17,10,19,4,16,6,21,12,2,9,5,7,20,3,18,11,1,13],
[14,8,12,10,13,9,11,6,7,4,5,2,3,21,1,19,20,17,18,16],
[17,8,19,10,4,14,6,12,21,9,2,7,5,13,3,11,20,1,18,15],
[16,8,14,10,12,4,9,6,13,7,11,2,5,21,3,19,1,20,15,18],
[19,8,21,4,20,6,2,10,5,12,7,9,3,14,11,13,1,16,15,17],
[18,8,16,10,14,4,12,6,9,21,7,2,13,5,11,3,17,1,15,20],
[21,8,4,18,6,10,2,12,5,9,7,14,3,13,11,16,1,17,15,19],
[20,8,18,4,10,6,14,12,16,9,19,7,13,2,11,5,17,3,15,1]]

21-Line Solution #2 (133 Triangles, 3-rotational symmetry) by P.Savchuk

[[21,15,19,17,20,16,18,13,14,11,12,9,10,7,8,5,6,3,4,2],
[3,15,5,17,13,21,11,19,7,16,9,14,12,18,10,20,6,8,4,1],
[2,15,21,17,19,13,16,11,18,14,20,9,12,7,10,5,8,6,1,4],
[5,15,7,13,11,17,9,19,12,16,14,21,10,18,6,20,8,2,1,3],
[4,15,2,17,21,13,19,11,16,7,14,9,18,12,20,10,3,8,1,6],
[7,15,11,13,9,17,12,19,14,16,10,21,18,4,20,2,8,3,1,5],
[6,15,4,13,17,11,21,19,2,16,5,14,18,9,20,12,3,10,1,8],
[9,11,10,13,12,15,14,17,16,19,18,21,20,4,2,6,3,5,1,7],
[8,11,15,13,6,17,4,19,21,16,2,14,5,18,7,20,3,12,1,10],
[11,8,13,15,12,17,14,19,16,6,21,4,18,2,20,5,3,7,1,9],
[10,8,9,15,6,13,4,17,7,21,2,19,5,16,3,18,20,14,1,12],
[13,8,15,10,17,6,19,4,16,21,14,2,18,5,20,7,3,9,1,11],
[12,8,10,15,9,6,11,4,7,17,2,21,5,19,3,16,20,18,1,14],
[15,8,17,10,19,6,16,4,21,12,2,9,5,7,18,3,20,11,1,13],
[14,8,12,10,13,9,11,6,7,4,5,2,3,21,1,19,20,17,18,16],
[17,8,19,10,6,14,4,12,21,9,2,7,5,11,3,13,20,1,18,15],
[16,8,14,10,12,6,9,4,11,7,13,2,5,21,3,19,1,20,15,18],
[19,8,21,6,4,10,2,12,5,9,7,14,3,11,20,13,1,16,15,17],
[18,8,16,10,14,6,12,4,9,21,7,2,11,5,13,3,17,1,15,20],
[21,8,4,6,2,10,5,12,7,9,3,14,11,18,13,16,1,17,15,19],
[20,8,18,6,10,4,14,12,16,9,19,7,11,2,13,5,17,3,15,1]]

21-Line Solution #3 (133 Triangles, mirror symmetry) by P.Savchuk

[[21,19,20,17,18,15,16,13,14,11,12,9,10,7,8,5,6,3,4,2],
[3,19,13,15,9,17,7,18,11,21,12,16,5,14,6,10,8,20,4,1],
[2,19,21,15,17,13,18,9,16,11,20,12,14,7,10,5,8,6,1,4],
[5,13,7,9,6,15,11,19,12,17,8,16,14,18,10,21,20,2,1,3],
[4,13,19,9,15,7,17,11,18,12,21,16,2,14,20,10,3,8,1,6],
[7,13,9,4,15,19,11,17,12,18,16,21,14,2,10,20,8,3,1,5],
[6,13,4,9,19,15,5,17,2,18,21,11,16,12,20,14,3,10,1,8],
[9,13,11,15,12,19,17,4,16,18,14,21,10,2,20,6,3,5,1,7],
[8,13,6,4,7,19,5,15,2,17,21,18,3,16,20,11,14,12,1,10],
[11,13,12,15,14,17,16,19,18,4,21,8,2,6,20,5,3,7,1,9],
[10,13,8,15,4,19,6,17,5,18,2,21,7,16,3,20,9,14,1,12],
[13,10,15,8,19,4,17,6,18,5,21,2,16,7,20,3,14,9,1,11],
[12,10,11,8,9,6,7,4,5,19,2,15,21,17,3,18,20,16,1,14],
[15,10,17,19,16,4,18,8,21,6,2,5,20,7,3,12,9,11,1,13],
[14,10,12,8,11,4,6,19,7,5,9,2,13,21,3,17,20,18,1,16],
[17,10,19,14,4,8,18,6,21,5,2,12,7,11,3,9,20,13,1,15],
[16,10,14,19,8,4,12,6,11,5,7,2,9,21,13,3,15,20,1,18],
[19,10,4,14,8,16,6,12,5,11,2,7,21,9,3,13,20,15,1,17],
[18,10,16,14,17,8,12,4,11,6,15,7,9,5,13,2,3,21,1,20],
[21,4,2,8,6,10,5,14,7,12,3,11,9,16,13,18,15,17,1,19],
[20,4,10,8,14,6,16,5,12,2,11,7,18,9,17,13,15,3,19,1]]

22-Line Solution (143 Triangles, based on n=21 solution) by P.Savchuk

[[22,16,20,18,21,17,19,14,15,12,13,10,11,8,9,6,7,4,5,3],
[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22],
[2,4,16,6,18,14,22,12,20,8,17,10,15,13,19,11,21,7,9,5,1],
[2,3,16,22,18,20,14,17,12,19,15,21,10,13,8,11,6,9,7,1,5],
[2,6,16,8,14,12,18,10,20,13,17,15,22,11,19,7,21,9,3,1,4],
[2,5,16,3,18,22,14,20,12,17,8,15,10,19,13,21,11,4,9,1,7],
[2,8,16,12,14,10,18,13,20,15,17,11,22,19,5,21,3,9,4,1,6],
[2,7,16,5,14,18,12,22,20,3,17,6,15,19,10,21,13,4,11,1,9],
[2,10,12,11,14,13,16,15,18,17,20,19,22,21,5,3,7,4,6,1,8],
[2,9,12,16,14,7,18,5,20,22,17,3,15,6,19,8,21,4,13,1,11],
[2,12,9,14,16,13,18,15,20,17,7,22,5,19,3,21,6,4,8,1,10],
[2,11,9,10,16,7,14,5,18,8,22,3,20,6,17,4,19,21,15,1,13],
[2,14,9,16,11,18,7,20,5,17,22,15,3,19,6,21,8,4,10,1,12],
[2,13,9,11,16,10,7,12,5,8,18,3,22,6,20,4,17,21,19,1,15],
[2,16,9,18,11,20,7,17,5,22,13,3,10,6,8,19,4,21,12,1,14],
[2,15,9,13,11,14,10,12,7,8,5,6,3,4,22,1,20,21,18,19,17],
[2,18,9,20,11,7,15,5,13,22,10,3,8,6,12,4,14,21,1,19,16],
[2,17,9,15,11,13,7,10,5,12,8,14,3,6,22,4,20,1,21,16,19],
[2,20,9,22,7,5,11,3,13,6,10,8,15,4,12,21,14,1,17,16,18],
[2,19,9,17,11,15,7,13,5,10,22,8,3,12,6,14,4,18,1,16,21],
[2,22,9,5,7,3,11,6,13,8,10,4,15,12,19,14,17,1,18,16,20],
[2,21,9,19,7,11,5,15,13,17,10,20,8,12,3,14,6,18,4,16,1]]

23-Line Solution (161 Triangles) by P.Savchuk (table found using Kissat)

[[2,20,4,18,8,22,6,14,3,12,10,16,7,17,9,15,13,19,11,21,5,23],
[1,20,22,18,21,16,19,14,17,8,15,12,23,10,13,6,9,7,11,4,5,3],
[4,20,8,18,6,22,14,1,12,16,10,17,7,15,9,19,13,21,11,23,5,2],
[3,20,1,18,22,8,16,14,21,12,17,6,15,10,19,7,13,9,23,11,2,5],
[6,8,7,10,9,14,12,18,13,16,11,17,15,20,19,22,21,1,23,3,2,4],
[5,8,20,18,3,22,1,14,16,12,21,17,4,15,19,10,23,13,2,9,11,7],
[8,5,10,18,14,20,12,22,16,1,17,3,15,21,19,4,13,23,9,2,11,6],
[7,5,6,20,3,18,1,22,4,16,21,14,19,17,2,15,23,12,13,10,11,9],
[10,5,14,18,12,20,16,22,17,1,15,3,19,21,13,4,23,7,2,6,11,8],
[9,5,7,18,20,14,22,12,1,16,3,17,21,15,4,19,6,23,2,13,8,11],
[12,14,13,18,16,5,17,20,15,22,19,1,21,3,23,4,2,7,6,9,8,10],
[11,14,5,18,9,20,7,22,10,1,3,16,6,21,4,17,19,15,2,23,8,13],
[14,11,18,5,16,20,17,22,15,1,19,3,21,9,4,7,23,6,2,10,8,12],
[13,11,12,5,9,18,7,20,10,22,3,1,6,16,4,21,8,19,2,17,23,15],
[16,18,17,5,20,11,22,13,1,9,3,7,21,10,4,6,19,12,2,8,23,14],
[15,18,11,5,13,20,9,22,7,1,10,3,12,6,14,4,8,21,2,19,23,17],
[18,15,5,11,20,13,22,9,1,7,3,10,21,6,4,12,19,8,2,14,23,16],
[17,15,16,11,13,5,12,9,14,7,10,20,6,3,8,1,4,22,2,21,23,19],
[20,5,22,11,1,13,3,9,21,7,4,10,6,15,12,17,8,14,2,16,23,18],
[19,5,15,11,17,13,16,9,12,7,14,10,18,6,8,3,4,1,2,22,23,21],
[22,5,1,11,3,13,9,19,7,15,10,17,6,12,4,14,8,16,2,18,23,20],
[21,5,19,11,15,13,17,9,16,7,12,10,14,3,6,1,8,4,18,2,20,23],
[1,5,3,11,4,9,7,13,6,10,2,12,8,15,14,17,16,19,18,21,20,22]]

24-Line Solution (172 Triangles) by P.Savchuk (based on 23-line solution)

[[3,5,4,7,6,9,8,11,10,17,13,23,15,19,12,18,16,21,14,22,20,24,2],
[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,1],
[2,1,5,23,7,21,17,24,19,22,11,15,13,18,9,16,8,12,10,14,6,20,4],
[2,5,1,7,23,9,17,11,21,13,19,8,15,10,18,6,16,12,22,14,24,20,3],
[2,4,1,3,23,24,21,22,17,19,7,15,11,18,13,16,9,12,8,14,10,20,6],
[2,7,1,9,23,11,17,8,13,10,19,15,21,18,4,16,22,12,24,14,3,20,5],
[2,6,1,4,23,3,21,24,17,22,19,5,15,18,11,16,13,20,12,14,9,10,8],
[2,9,1,11,23,17,6,13,21,19,4,15,22,18,24,16,3,12,5,14,20,10,7],
[2,8,1,6,23,4,17,21,11,19,13,22,15,24,18,3,16,5,12,20,14,7,10],
[2,11,1,17,23,13,6,19,21,15,4,18,22,16,24,12,3,14,5,20,8,7,9],
[2,10,1,8,23,6,17,4,21,9,19,24,22,3,15,5,18,7,16,20,13,14,12],
[2,13,17,15,23,19,1,18,21,16,4,22,6,24,10,3,8,5,9,20,7,14,11],
[2,12,17,1,23,10,6,8,21,4,19,9,22,24,15,3,18,5,16,7,20,11,14],
[2,15,17,16,19,18,23,21,1,22,4,24,6,3,10,5,8,20,9,7,12,11,13],
[2,14,17,12,23,1,19,6,21,10,4,8,22,9,24,13,3,11,5,7,18,20,16],
[2,17,14,19,23,18,1,21,12,4,6,22,10,24,8,3,9,5,13,7,11,20,15],
[2,16,14,15,12,13,1,10,23,8,6,11,4,9,21,3,24,7,22,5,19,20,18],
[2,19,14,23,16,1,12,21,6,4,10,22,8,24,9,3,13,5,11,7,15,20,17],
[2,18,14,16,23,12,1,15,6,10,21,8,4,13,9,11,24,3,22,7,5,17,20],
[2,21,23,22,1,24,4,3,6,5,10,8,14,9,12,7,13,11,16,15,18,17,19],
[2,20,23,14,1,16,12,18,6,15,10,19,8,13,4,11,9,17,3,7,24,5,22],
[2,23,20,1,14,4,12,6,16,10,18,8,15,9,13,24,11,3,19,7,17,5,21],
[2,22,20,21,14,18,16,19,12,15,1,13,10,17,8,11,6,9,4,7,3,5,24],
[2,1,20,4,14,6,12,10,16,8,18,9,15,13,22,11,19,3,17,7,21,5,23]]

25-Line Solution (191 Triangles, Mirror Symmetry).
Table by Kyle Wood. (previously known)

[[2,8,4,12,6,10,7,11,5,9,3,14,13,24,18,22,16,20,17,21,15,23,19,25],
[1,8,24,12,22,10,20,11,21,9,23,14,25,13,18,4,16,6,17,7,15,5,19,3],
[4,8,6,12,7,10,5,11,9,1,14,24,13,22,18,20,16,21,17,23,15,25,19,2],
[3,8,1,12,24,10,22,11,20,9,21,14,23,13,25,18,2,16,17,6,15,7,19,5],
[6,8,7,12,10,3,11,1,9,24,14,22,13,20,18,21,16,23,17,25,15,2,19,4],
[5,8,3,12,1,10,24,11,22,9,20,14,21,13,23,18,25,16,2,17,4,15,19,7],
[8,5,12,3,10,1,11,24,9,22,14,20,13,21,18,23,16,25,17,2,15,4,19,6],
[7,5,6,3,4,1,2,24,25,22,23,20,21,12,18,11,17,14,19,13,16,10,15,9],
[10,12,11,3,1,5,24,7,22,6,20,4,21,2,23,25,14,18,13,17,16,19,15,8],
[9,12,5,3,7,1,6,24,4,22,2,20,25,21,23,11,18,14,17,13,19,16,8,15],
[12,9,3,5,1,7,24,6,22,4,20,2,21,25,23,10,18,8,17,19,14,16,13,15],
[11,9,10,5,7,3,6,1,4,24,2,22,25,20,23,21,8,18,19,17,16,14,15,13],
[14,1,24,3,22,5,20,7,21,6,23,4,25,2,18,9,17,10,19,8,16,11,15,12],
[13,1,3,24,5,22,7,20,6,21,4,23,2,25,9,18,10,17,8,19,11,16,12,15],
[16,18,17,22,20,24,21,1,23,3,25,5,2,7,4,6,19,9,8,10,11,13,12,14],
[15,18,24,22,1,20,3,21,5,23,7,25,6,2,4,17,9,19,10,8,13,11,14,12],
[18,15,22,24,20,1,21,3,23,5,25,7,2,6,4,16,9,13,10,14,8,11,19,12],
[17,15,16,24,1,22,3,20,5,21,7,23,6,25,4,2,13,9,14,10,11,8,12,19],
[20,22,21,24,23,1,25,3,2,5,4,7,6,15,9,16,10,13,8,14,11,17,12,18],
[19,22,15,24,17,1,16,3,18,5,13,7,14,6,9,4,11,2,10,25,12,23,8,21],
[22,19,24,15,1,17,3,16,5,18,7,13,6,14,4,9,2,11,25,10,23,12,8,20],
[21,19,20,15,17,24,16,1,18,3,13,5,14,7,9,6,11,4,10,2,12,25,8,23],
[24,19,1,15,3,17,5,16,7,18,6,13,4,14,2,9,25,11,10,21,12,20,8,22],
[23,19,21,15,20,17,22,16,18,1,13,3,14,5,9,7,11,6,10,4,12,2,8,25],
[1,19,3,15,5,17,7,16,6,18,4,13,2,14,9,23,11,21,10,20,12,22,8,24]]

27-Line Solution #1 (225 Triangles) by P.Savchuk (table found using Kissat)

[[27,19,25,23,26,21,24,17,20,18,22,15,16,13,14,11,12,9,10,7,8,5,6,3,4,2],
[3,19,5,17,7,15,13,21,11,23,9,18,16,25,14,20,12,22,6,24,8,27,10,26,4,1],
[2,19,27,17,23,21,25,15,18,13,20,11,22,16,24,9,14,5,12,7,26,8,10,6,1,4],
[5,19,7,17,13,15,11,21,9,23,16,18,14,25,12,20,6,22,8,24,10,27,26,2,1,3],
[4,19,2,17,27,21,23,15,25,13,18,11,20,16,22,9,24,14,3,12,26,7,10,8,1,6],
[7,19,13,17,11,15,9,21,16,23,14,18,12,25,20,4,22,2,24,27,8,26,10,3,1,5],
[6,19,4,17,2,15,21,13,23,11,25,18,27,16,20,9,22,14,24,12,3,26,5,10,1,8],
[9,13,11,19,15,17,12,16,14,21,18,23,20,25,22,4,24,2,27,6,26,3,10,5,1,7],
[8,13,19,11,17,15,6,21,4,23,2,18,25,16,27,20,7,22,5,24,3,14,26,12,1,10],
[11,13,12,15,14,17,16,19,18,21,20,23,22,25,24,4,27,2,26,6,3,8,5,7,1,9],
[10,13,8,19,9,17,6,15,4,21,2,23,7,25,27,18,5,20,3,22,24,16,26,14,1,12],
[13,10,15,19,17,8,16,21,14,23,18,6,25,4,20,2,22,27,24,7,3,5,26,9,1,11],
[12,10,11,8,9,19,6,17,4,15,2,21,7,23,27,25,5,18,3,20,24,22,26,16,1,14],
[15,10,17,19,16,8,21,12,23,6,18,4,25,2,20,27,22,7,24,5,3,9,26,11,1,13],
[14,10,12,19,8,17,9,6,11,4,13,2,7,21,27,23,5,25,3,18,24,20,26,22,1,16],
[17,10,19,14,8,12,21,6,23,4,18,2,25,9,27,7,20,5,22,3,24,11,26,13,1,15],
[16,10,14,19,12,8,15,9,11,6,13,4,7,2,5,27,3,23,25,21,26,24,1,20,22,18],
[19,10,21,8,23,12,6,14,4,16,2,9,25,7,27,11,5,13,3,15,24,26,20,1,22,17],
[18,10,16,14,17,12,15,8,11,9,13,6,7,4,5,2,3,27,1,25,26,23,24,21,22,20],
[21,10,23,8,25,6,4,12,2,14,27,9,7,16,5,11,3,13,24,15,26,18,1,17,22,19],
[20,10,18,8,14,12,16,6,9,4,11,2,13,7,15,27,5,23,3,25,17,26,1,24,19,22],
[23,10,25,8,4,6,2,12,27,14,7,9,5,16,3,11,24,13,26,15,1,18,17,20,19,21],
[22,10,20,8,18,12,14,6,16,4,9,2,11,7,13,27,15,5,21,3,17,25,1,26,19,24],
[25,10,4,8,2,6,27,12,7,14,5,9,3,16,11,22,13,20,15,18,26,17,1,21,19,23],
[24,10,22,8,20,6,12,4,14,2,16,9,18,7,11,27,13,5,15,3,21,17,23,1,19,26],
[27,4,2,10,6,8,3,7,5,12,9,14,11,16,13,22,15,20,18,24,17,21,1,23,19,25],
[26,4,10,2,8,6,24,12,22,14,20,9,16,7,18,11,25,13,23,15,21,5,17,3,19,1]]

27-Line Solution #2 (225 Triangles) by P.Savchuk (table found using Kissat)

[[2,4,3,10,6,8,5,9,7,12,11,14,13,16,15,22,18,20,17,21,19,24,23,26,25,27],
[1,4,26,10,27,22,24,14,16,8,20,9,21,12,15,6,18,11,17,7,23,13,25,5,19,3],
[4,1,10,26,8,22,14,27,9,16,6,20,12,24,15,21,11,18,7,17,13,23,5,25,19,2],
[3,1,2,26,27,10,24,22,25,16,20,14,21,8,18,15,23,12,17,9,11,6,13,7,19,5],
[6,10,8,1,9,14,12,22,11,16,7,20,15,26,18,21,13,24,17,27,23,3,25,2,19,4],
[5,10,1,8,26,14,22,9,27,16,3,20,24,12,21,15,2,18,25,17,23,11,4,13,19,7],
[8,10,9,1,12,14,11,22,16,5,20,26,15,27,21,24,18,3,17,2,23,25,13,4,19,6],
[7,10,5,1,6,26,3,22,27,14,24,16,2,20,25,21,4,18,23,15,17,12,19,11,13,9],
[10,7,1,5,14,26,22,6,27,3,16,24,20,2,21,25,15,18,12,23,17,4,11,19,13,8],
[9,7,8,5,6,1,3,26,2,27,4,24,25,22,23,20,21,16,18,14,17,15,19,12,13,11],
[12,1,14,7,22,5,16,26,20,27,15,24,21,3,18,2,17,25,23,6,4,9,19,8,13,10],
[11,1,7,14,5,22,26,16,27,20,3,24,6,21,2,15,25,18,9,23,4,17,8,19,10,13],
[14,1,16,22,15,20,18,26,21,5,24,27,17,3,23,2,25,7,4,6,19,9,8,11,10,12],
[13,1,11,7,12,5,9,26,6,22,3,27,8,24,2,16,25,20,4,21,23,18,10,17,19,15],
[16,1,22,13,20,5,26,7,27,11,24,3,21,6,2,12,25,9,18,4,23,8,17,10,19,14],
[15,1,13,22,7,5,11,26,12,27,6,3,9,24,8,2,14,25,4,20,23,21,10,18,19,17],
[18,22,20,1,21,26,24,5,27,13,3,7,2,11,25,6,23,9,4,12,8,15,10,14,19,16],
[17,22,1,20,13,26,5,21,27,24,7,3,11,2,6,25,12,9,15,4,8,23,14,10,16,19],
[20,22,21,1,24,26,23,27,25,3,2,5,4,7,6,13,9,11,8,12,10,15,14,17,16,18],
[19,22,17,1,18,13,15,5,7,26,11,27,12,3,6,24,9,2,8,25,14,4,16,23,10,21],
[22,19,1,17,26,13,5,18,27,7,24,11,3,15,6,12,2,9,25,8,4,14,23,16,10,20],
[21,19,20,17,18,1,15,13,16,7,11,5,12,26,9,6,14,3,8,27,2,24,4,25,10,23],
[24,1,26,19,27,5,3,13,2,7,25,11,6,17,9,12,4,15,8,18,14,21,16,20,10,22],
[23,1,19,26,17,5,13,27,18,7,21,11,15,3,12,6,20,9,16,8,14,2,22,4,10,25],
[26,1,27,19,3,5,2,13,7,23,11,17,6,18,12,15,9,21,8,20,14,16,4,22,10,24],
[25,1,23,19,24,17,21,13,18,5,15,7,20,11,16,12,22,9,14,6,8,3,10,2,4,27],
[1,25,19,23,5,17,13,24,18,21,7,15,11,20,12,16,6,9,3,14,8,22,2,10,4,26]]

27-Line Solution #2 in a fish-eye projection

[[2,4,3,10,6,8,5,9,7,12,11,14,13,16,15,22,18,20,17,21,19,24,23,26,25,27],
[1,4,26,10,27,22,24,14,16,8,20,9,21,12,15,6,18,11,17,7,23,13,25,5,19,3],
[4,1,10,26,8,22,14,27,9,16,6,20,12,24,15,21,11,18,7,17,13,23,5,25,19,2],
[3,1,2,26,27,10,24,22,25,16,20,14,21,8,18,15,23,12,17,9,11,6,13,7,19,5],
[6,10,8,1,9,14,12,22,11,16,7,20,15,26,18,21,13,24,17,27,23,3,25,2,19,4],
[5,10,1,8,26,14,22,9,27,16,3,20,24,12,21,15,2,18,25,17,23,11,4,13,19,7],
[8,10,9,1,12,14,11,22,16,5,20,26,15,27,21,24,18,3,17,2,23,25,13,4,19,6],
[7,10,5,1,6,26,3,22,27,14,24,16,2,20,25,21,4,18,23,15,17,12,19,11,13,9],
[10,7,1,5,14,26,22,6,27,3,16,24,20,2,21,25,15,18,12,23,17,4,11,19,13,8],
[9,7,8,5,6,1,3,26,2,27,4,24,25,22,23,20,21,16,18,14,17,15,19,12,13,11],
[12,1,14,7,22,5,16,26,20,27,15,24,21,3,18,2,17,25,23,6,4,9,19,8,13,10],
[11,1,7,14,5,22,26,16,27,20,3,24,6,21,2,15,25,18,9,23,4,17,8,19,10,13],
[14,1,16,22,15,20,18,26,21,5,24,27,17,3,23,2,25,7,4,6,19,9,8,11,10,12],
[13,1,11,7,12,5,9,26,6,22,3,27,8,24,2,16,25,20,4,21,23,18,10,17,19,15],
[16,1,22,13,20,5,26,7,27,11,24,3,21,6,2,12,25,9,18,4,23,8,17,10,19,14],
[15,1,13,22,7,5,11,26,12,27,6,3,9,24,8,2,14,25,4,20,23,21,10,18,19,17],
[18,22,20,1,21,26,24,5,27,13,3,7,2,11,25,6,23,9,4,12,8,15,10,14,19,16],
[17,22,1,20,13,26,5,21,27,24,7,3,11,2,6,25,12,9,15,4,8,23,14,10,16,19],
[20,22,21,1,24,26,23,27,25,3,2,5,4,7,6,13,9,11,8,12,10,15,14,17,16,18],
[19,22,17,1,18,13,15,5,7,26,11,27,12,3,6,24,9,2,8,25,14,4,16,23,10,21],
[22,19,1,17,26,13,5,18,27,7,24,11,3,15,6,12,2,9,25,8,4,14,23,16,10,20],
[21,19,20,17,18,1,15,13,16,7,11,5,12,26,9,6,14,3,8,27,2,24,4,25,10,23],
[24,1,26,19,27,5,3,13,2,7,25,11,6,17,9,12,4,15,8,18,14,21,16,20,10,22],
[23,1,19,26,17,5,13,27,18,7,21,11,15,3,12,6,20,9,16,8,14,2,22,4,10,25],
[26,1,27,19,3,5,2,13,7,23,11,17,6,18,12,15,9,21,8,20,14,16,4,22,10,24],
[25,1,23,19,24,17,21,13,18,5,15,7,20,11,16,12,22,9,14,6,8,3,10,2,4,27],
[1,25,19,23,5,17,13,24,18,21,7,15,11,20,12,16,6,9,3,14,8,22,2,10,4,26]]

28-Line Solution (238 Triangles) by P.Savchuk (based on 27-line solution)
* Image is a close-up, some triangles can be cropped

[[28,20,26,24,27,22,25,18,21,19,23,16,17,14,15,12,13,10,11,8,9,6,7,4,5,3],
[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28],
[2,4,20,6,18,8,16,14,22,12,24,10,19,17,26,15,21,13,23,7,25,9,28,11,27,5,1],
[2,3,20,28,18,24,22,26,16,19,14,21,12,23,17,25,10,15,6,13,8,27,9,11,7,1,5],
[2,6,20,8,18,14,16,12,22,10,24,17,19,15,26,13,21,7,23,9,25,11,28,27,3,1,4],
[2,5,20,3,18,28,22,24,16,26,14,19,12,21,17,23,10,25,15,4,13,27,8,11,9,1,7],
[2,8,20,14,18,12,16,10,22,17,24,15,19,13,26,21,5,23,3,25,28,9,27,11,4,1,6],
[2,7,20,5,18,3,16,22,14,24,12,26,19,28,17,21,10,23,15,25,13,4,27,6,11,1,9],
[2,10,14,12,20,16,18,13,17,15,22,19,24,21,26,23,5,25,3,28,7,27,4,11,6,1,8],
[2,9,14,20,12,18,16,7,22,5,24,3,19,26,17,28,21,8,23,6,25,4,15,27,13,1,11],
[2,12,14,13,16,15,18,17,20,19,22,21,24,23,26,25,5,28,3,27,7,4,9,6,8,1,10],
[2,11,14,9,20,10,18,7,16,5,22,3,24,8,26,28,19,6,21,4,23,25,17,27,15,1,13],
[2,14,11,16,20,18,9,17,22,15,24,19,7,26,5,21,3,23,28,25,8,4,6,27,10,1,12],
[2,13,11,12,9,10,20,7,18,5,16,3,22,8,24,28,26,6,19,4,21,25,23,27,17,1,15],
[2,16,11,18,20,17,9,22,13,24,7,19,5,26,3,21,28,23,8,25,6,4,10,27,12,1,14],
[2,15,11,13,20,9,18,10,7,12,5,14,3,8,22,28,24,6,26,4,19,25,21,27,23,1,17],
[2,18,11,20,15,9,13,22,7,24,5,19,3,26,10,28,8,21,6,23,4,25,12,27,14,1,16],
[2,17,11,15,20,13,9,16,10,12,7,14,5,8,3,6,28,4,24,26,22,27,25,1,21,23,19],
[2,20,11,22,9,24,13,7,15,5,17,3,10,26,8,28,12,6,14,4,16,25,27,21,1,23,18],
[2,19,11,17,15,18,13,16,9,12,10,14,7,8,5,6,3,4,28,1,26,27,24,25,22,23,21],
[2,22,11,24,9,26,7,5,13,3,15,28,10,8,17,6,12,4,14,25,16,27,19,1,18,23,20],
[2,21,11,19,9,15,13,17,7,10,5,12,3,14,8,16,28,6,24,4,26,18,27,1,25,20,23],
[2,24,11,26,9,5,7,3,13,28,15,8,10,6,17,4,12,25,14,27,16,1,19,18,21,20,22],
[2,23,11,21,9,19,13,15,7,17,5,10,3,12,8,14,28,16,6,22,4,18,26,1,27,20,25],
[2,26,11,5,9,3,7,28,13,8,15,6,10,4,17,12,23,14,21,16,19,27,18,1,22,20,24],
[2,25,11,23,9,21,7,13,5,15,3,17,10,19,8,12,28,14,6,16,4,22,18,24,1,20,27],
[2,28,5,3,11,7,9,4,8,6,13,10,15,12,17,14,23,16,21,19,25,18,22,1,24,20,26],
[2,27,5,11,3,9,7,25,13,23,15,21,10,17,8,19,12,26,14,24,16,22,6,18,4,20,1]]

29-Line Solution (261 Triangles). [Savchuk]
Autogenerated, using gen_2nm1(kobon_15), based on solution by Suzuki

[[2,22,4,10,6,20,8,16,7,21,5,14,3,18,15,28,17,26,12,24,19,23,11,25,13,27,9,29],
[1,22,28,10,26,20,24,16,23,21,25,14,27,18,29,15,17,4,12,6,19,8,11,7,13,5,9,3],
[4,22,6,10,8,20,7,16,5,21,14,1,18,28,15,26,17,24,12,23,19,25,11,27,13,29,9,2],
[3,22,1,10,28,20,26,16,24,21,23,14,25,18,27,15,29,17,2,12,19,6,11,8,13,7,9,5],
[6,22,8,10,7,20,16,3,21,1,14,28,18,26,15,24,17,23,12,25,19,27,11,29,13,2,9,4],
[5,22,3,10,1,20,28,16,26,21,24,14,23,18,25,15,27,17,29,12,2,19,4,11,13,8,9,7],
[8,22,10,5,20,3,16,1,21,28,14,26,18,24,15,23,17,25,12,27,19,29,11,2,13,4,9,6],
[7,22,5,10,3,20,1,16,28,21,26,14,24,18,23,15,25,17,27,12,29,19,2,11,4,13,6,9],
[10,22,16,20,14,21,15,18,12,17,11,19,13,24,23,26,25,28,27,1,29,3,2,5,4,7,6,8],
[9,22,7,5,8,3,6,1,4,28,2,26,29,24,27,23,25,20,21,16,18,14,17,15,19,12,13,11],
[12,16,14,22,15,20,18,21,17,9,19,26,24,28,23,1,25,3,27,5,29,7,2,8,4,6,13,10],
[11,16,22,14,20,15,21,18,9,17,28,26,1,24,3,23,5,25,7,27,8,29,6,2,4,19,10,13],
[14,16,15,22,18,20,17,21,19,9,24,26,23,28,25,1,27,3,29,5,2,7,4,8,6,11,10,12],
[13,16,11,22,12,20,9,21,3,1,5,28,7,26,8,24,6,23,4,25,2,27,29,18,10,17,19,15],
[16,13,22,11,20,12,21,9,18,1,28,3,26,5,24,7,23,8,25,6,27,4,29,2,17,10,19,14],
[15,13,14,11,12,22,9,20,5,3,7,1,8,28,6,26,4,24,2,23,29,25,27,21,10,18,19,17],
[18,22,20,13,21,11,9,12,28,1,26,3,24,5,23,7,25,8,27,6,29,4,2,15,10,14,19,16],
[17,22,13,20,11,21,12,9,15,1,3,28,5,26,7,24,8,23,6,25,4,27,2,29,14,10,16,19],
[20,22,21,13,9,11,26,28,24,1,23,3,25,5,27,7,29,8,2,6,4,12,10,15,14,17,16,18],
[19,22,17,13,18,11,15,12,14,9,16,5,7,3,8,1,6,28,4,26,2,24,29,23,27,25,10,21],
[22,19,13,17,11,18,12,15,9,14,3,5,1,7,28,8,26,6,24,4,23,2,25,29,27,16,10,20],
[21,19,20,17,18,13,15,11,14,12,16,9,10,7,8,5,6,3,4,1,2,28,29,26,27,24,25,23],
[24,9,26,13,28,11,1,19,3,12,5,17,7,15,8,18,6,14,4,21,2,16,29,20,27,10,25,22],
[23,9,13,26,11,28,19,1,12,3,17,5,15,7,18,8,14,6,21,4,16,2,20,29,10,27,22,25],
[26,9,28,13,1,11,3,19,5,12,7,17,8,15,6,18,4,14,2,21,29,16,27,20,10,23,22,24],
[25,9,23,13,24,11,19,28,12,1,17,3,15,5,18,7,14,8,21,6,16,4,20,2,10,29,22,27],
[28,9,1,13,3,11,5,19,7,12,8,17,6,15,4,18,2,14,29,21,16,25,20,23,10,24,22,26],
[27,9,25,13,23,11,24,19,26,12,17,1,15,3,18,5,14,7,21,8,16,6,20,4,10,2,22,29],
[1,9,3,13,5,11,7,19,8,12,6,17,4,15,2,18,14,27,21,25,16,23,20,24,10,26,22,28]]

33-Line Solution (341 Triangles, Mirror Symmetry). [Savchuk]
Autogenerated, using gen_2nm1_repeat([[3,2],[3,1],[2,1]], count=4)

[[2,10,4,14,6,12,8,16,9,13,7,15,5,11,3,18,17,32,24,30,20,28,22,26,19,27,23,29,21,31,25,33],
[1,10,32,14,30,12,28,16,26,13,27,15,29,11,31,18,33,17,24,4,20,6,22,8,19,9,23,7,21,5,25,3],
[4,10,6,14,8,12,9,16,7,13,5,15,11,1,18,32,17,30,24,28,20,26,22,27,19,29,23,31,21,33,25,2],
[3,10,1,14,32,12,30,16,28,13,26,15,27,11,29,18,31,17,33,24,2,20,22,6,19,8,23,9,21,7,25,5],
[6,10,8,14,9,12,7,16,13,3,15,1,11,32,18,30,17,28,24,26,20,27,22,29,19,31,23,33,21,2,25,4],
[5,10,3,14,1,12,32,16,30,13,28,15,26,11,27,18,29,17,31,24,33,20,2,22,4,19,23,8,21,9,25,7],
[8,10,9,14,12,5,16,3,13,1,15,32,11,30,18,28,17,26,24,27,20,29,22,31,19,33,23,2,21,4,25,6],
[7,10,5,14,3,12,1,16,32,13,30,15,28,11,26,18,27,17,29,24,31,20,33,22,2,19,4,23,6,21,25,9],
[10,7,14,5,12,3,16,1,13,32,15,30,11,28,18,26,17,27,24,29,20,31,22,33,19,2,23,4,21,6,25,8],
[9,7,8,5,6,3,4,1,2,32,33,30,31,28,29,26,27,14,24,16,22,15,23,18,25,17,20,12,19,13,21,11],
[12,14,13,16,15,3,1,5,32,7,30,9,28,8,26,6,27,4,29,2,31,33,18,24,17,22,20,23,19,25,21,10],
[11,14,7,5,9,3,8,1,6,32,4,30,2,28,33,26,31,27,29,16,24,15,22,18,23,17,25,20,10,19,21,13],
[14,11,16,5,3,7,1,9,32,8,30,6,28,4,26,2,27,33,29,31,15,24,18,22,17,23,20,25,19,10,21,12],
[13,11,12,7,9,5,8,3,6,1,4,32,2,30,33,28,31,26,29,27,10,24,25,22,23,16,20,18,21,17,19,15],
[16,11,3,5,1,7,32,9,30,8,28,6,26,4,27,2,29,33,31,13,24,12,22,10,23,25,18,20,17,21,19,14],
[15,11,13,5,7,3,9,1,8,32,6,30,4,28,2,26,33,27,31,29,12,24,10,22,25,23,14,20,21,18,19,17],
[18,1,32,3,30,5,28,7,26,9,27,8,29,6,31,4,33,2,24,11,22,13,23,12,25,10,20,15,21,14,19,16],
[17,1,3,32,5,30,7,28,9,26,8,27,6,29,4,31,2,33,11,24,13,22,12,23,10,25,15,20,14,21,16,19],
[20,24,22,30,28,32,26,1,27,3,29,5,31,7,33,9,2,8,4,6,23,11,25,13,10,12,21,15,14,17,16,18],
[19,24,32,30,1,28,3,26,5,27,7,29,9,31,8,33,6,2,4,22,11,23,13,25,12,10,17,15,18,14,16,21],
[22,24,23,28,26,30,27,32,29,1,31,3,33,5,2,7,4,9,6,8,25,11,10,13,12,19,15,17,14,18,16,20],
[21,24,19,30,32,28,1,26,3,27,5,29,7,31,9,33,8,2,6,4,20,11,17,13,18,12,15,10,16,25,14,23],
[24,21,28,30,26,32,27,1,29,3,31,5,33,7,2,9,4,8,6,19,11,20,13,17,12,18,10,15,25,16,14,22],
[23,21,22,19,20,32,1,30,3,28,5,26,7,27,9,29,8,31,6,33,4,2,17,11,18,13,15,12,16,10,14,25],
[26,28,27,30,29,32,31,1,33,3,2,5,4,7,6,9,8,21,11,19,13,20,12,17,10,18,15,23,16,22,14,24],
[25,28,21,30,23,32,19,1,22,3,20,5,24,7,17,9,18,8,11,6,15,4,13,2,16,33,12,31,14,29,10,27],
[28,25,30,21,32,23,1,19,3,22,5,20,7,24,9,17,8,18,6,11,4,15,2,13,33,16,31,12,29,14,10,26],
[27,25,26,21,23,30,19,32,22,1,20,3,24,5,17,7,18,9,11,8,15,6,13,4,16,2,12,33,14,31,10,29],
[30,25,32,21,1,23,3,19,5,22,7,20,9,24,8,17,6,18,4,11,2,15,33,13,31,16,12,27,14,26,10,28],
[29,25,27,21,26,23,28,19,22,32,20,1,24,3,17,5,18,7,11,9,15,8,13,6,16,4,12,2,14,33,10,31],
[32,25,1,21,3,23,5,19,7,22,9,20,8,24,6,17,4,18,2,11,33,15,13,29,16,27,12,26,14,28,10,30],
[31,25,29,21,27,23,26,19,28,22,30,20,24,1,17,3,18,5,11,7,15,9,13,8,16,6,12,4,14,2,10,33],
[1,25,3,21,5,23,7,19,9,22,8,20,6,24,4,17,2,18,11,31,15,29,13,27,16,26,12,28,14,30,10,32]]